The dynamics of the Snowball Earth Hadley circulation for off-equatorial and seasonally varying insolation
نویسنده
چکیده
I study the Hadley circulation of a completely icecovered Snowball Earth through simulations with a comprehensive atmosphere general circulation model. Because the Snowball Earth atmosphere is an example of a dry atmosphere, these simulations allow me to test to what extent dry theories and idealized models capture the dynamics of realistic dry Hadley circulations. Perpetual off-equatorial as well as seasonally varying insolation is used, extending a previous study for perpetual on-equatorial (equinox) insolation. Vertical diffusion of momentum, representing the momentum transport of dry convection, is fundamental to the momentum budgets of both the winter and summer cells. In the zonal budget, it is the primary process balancing the Coriolis force. In the meridional budget, it mixes meridional momentum between the upper and the lower branch and thereby decelerates the circulation. Because of the latter, the circulation intensifies by a factor of three when vertical diffusion of momentum is suppressed. For seasonally varying insolation, the circulation undergoes rapid transitions from the weak summer into the strong winter regime. Consistent with previous studies in idealized models, these transitions result from a mean-flow feedback, because of which they are insensitive to the treatment of vertical diffusion of momentum. Overall, the results corroborate previous findings for perpetual on-equatorial insolation. They demonstrate that descriptions of realistic dry Hadley circulations, in particular their strength, need to incorporate the vertical momentum transport by dry convection, a process that is neglected in most dry theories and idealized models. An improved estimate of the strength of the Snowball Earth Hadley circulation will also help to better constrain the climate of a possible Neoproterozoic Snowball Earth and its deglaciation threshold.
منابع مشابه
Dynamics of the Snowball Earth Hadley circulation
Introduction Conclusions References Tables Figures Back Close Full Screen / Esc
متن کاملResponse of idealized Hadley circulations to seasonally varying heating
[1] The response of Hadley circulations to displacements of the latitude of maximum heating is investigated in idealized axisymmetric and eddy-permitting models. Consistent with an earlier study and with theory for the nearly inviscid limit (Lindzen and Hou, 1988), the strength of the Hadley circulation is sensitive to displacements of heating: the winter cell strengthens and summer cell weaken...
متن کاملRegime Transitions of Steady and Time-Dependent Hadley Circulations: Comparison of Axisymmetric and Eddy-Permitting Simulations
Steady-state and time-dependent Hadley circulations are investigated with an idealized dry GCM, in which thermal forcing is represented as relaxation of temperatures toward a radiative-equilibrium state. The latitude f0 of maximum radiative-equilibrium temperature is progressively displaced off the equator or varied in time to study how the Hadley circulation responds to seasonally varying forc...
متن کاملImpact of Mountains on Tropical Circulation in Two Earth System Models
Two state-of-the-art Earth systemmodels (ESMs) were used in an idealized experiment to explore the role of mountains in shaping Earth’s climate system. Similar to previous studies, removing mountains from both ESMs results in the winds becoming more zonal and weaker Indian and Asian monsoon circulations. However, there are also broad changes to the Walker circulation and El Niño–Southern Oscill...
متن کاملWind–Evaporation Feedback and the Axisymmetric Transition to Angular Momentum–Conserving Hadley Flow
The effect of wind-induced surface heat exchange (WISHE) on axisymmetric, solstitial Hadley circulations is examined for forcings strong enough to produce meridional flow that nearly conserves absolute angular momentum in the free troposphere. Such forcings are known to produce an off-equatorial ascent zone in the summer hemisphere where the convergence of zonal momentum is balanced by drag on ...
متن کامل